Abstract |
Intermediate resonators (repeaters) for resonant inductive coupling wireless power transfer have been widely studied as a method of improving not only the transmission distance but also the output power. For the repeater to operate effectively, it is needed to induce a large current in the repeater to enhance the magnetic field far from a transmitting resonator. However, it is often difficult to induce a large current in the repeater due to frequency splitting phenomenon. This phenomenon easily occurs when the resonator having high quality factor such as the repeater is used. The frequency characteristic of the induced current in the repeater has multiple peaks when the frequency splitting phenomenon occurs. In addition, these multiple peaks shift according to slight variation in the parameters of the coil and the capacitor that constitute the resonator. This slight variation is easily caused by production error, temperature characteristic, and aging degradation of the coil and the capacitor. The induced current in the repeater is significantly decreased by the slight variation in the parameters, namely, the slight variation in the resonance frequency. Therefore, the repeater has low robustness against variation in the resonance frequency. To address these difficulties, we apply an auxiliary circuit to the repeater. The auxiliary circuit can dynamically adjust a phase of the induced current in the repeater, namely, the resonance frequency without complicated control. As a result, a large induced current can be maintained even if the frequencies corresponding to the peaks shift. Consequently, we can provide the repeater having a stable characteristic against the variation in the resonance frequency. The effectiveness of the repeater applied the auxiliary circuit and the appropriateness of analysis results are supported with simulation and experimental results. |